skip to main content


Search for: All records

Creators/Authors contains: "Sun, Liting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Robot motion planning is one of the important elements in robotics. In environments full of obstacles, it is always challenging to find a collision-free and dynamically feasible path between the robot's initial configuration and goal configuration. While many motion planning algorithms have been proposed in the past, each of them has its pros and cons. This work presents a benchmark which implements and compares existing planning algorithms on a variety of problems with extensive simulation. Based on that, we also propose a hybrid planning algorithm, RRT*-CFS, that combines the merits of sampling-based planning methods and optimization-based planning methods. The first layer, RRT*, quickly samples a semi-optimal path. The second layer, CFS, performs sequential convex optimization given the reference path from RRT*. The proposed RRT*-CFS has feasibility and convergence guarantees. Simulation results show that RRT*-CFS benefits from the hybrid structure and performs robustly in various scenarios including the narrow passage problems. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Human motion prediction is non-trivial in modern industrial settings. Accurate prediction of human motion can not only improve efficiency in human-robot collaboration, but also enhance human safety in close proximity to robots. Although many prediction models have been proposed with various parameterization and identification approaches, some fundamental questions remain unclear: what is the necessary parameterization of a prediction model? Is online adaptation of models necessary? Can a prediction model help improve safety and efficiency during human-robot collaboration? These unaddressed questions result from the difficulty of quantitatively evaluating different prediction models in a closed-loop fashion in real human-robot interaction. This paper develops a method to evaluate the closed-loop performance of different prediction models. In particular, we compare models with different parameterizations and models with or without online parameter adaptation. Extensive experiments were conducted on a human-robot collaboration platform. The experimental results demonstrate that human motion prediction significantly enhance the collaboration efficiency and human safety. Adaptable prediction models that are parameterized by neural networks achieve better performance. 
    more » « less